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Abstract. This note contains a set of six theorems that can be used to assess the ability of a theorem- 
proving system to reason about equality. The six theorems are graduated in terms of difficulty: they 
range from fairly trivial to quite difficult. They do not cover all aspects of equality reasoning, but they 
have proved useful to us in developing our system. 

Introduction 

In this note we present some examples of  reasoning about equality using an automated 

reasoning system. The two primary techniques used are the inference rule of  paramodu- 

lation and the term rewriting technique called demodulation.  Both of  these were 

introduced in the late 1960s [8, 3, 7]. In addition the paper by Knuth and Bendix in 

1970 [I ]  started a long chain of  research on manipulation of  a set of  rewrite rules by 

paramodulat ion into what is called a 'complete set o f  reductions. '  Here we will not  

discuss equality reasoning in that particular setting, although it is quite important ,  

preferring to postpone that topic to another column. We include here the complete 

details of  the proofs, so that someone experimenting with his own system can track 

precisely at least one path to each proof.  

There are many variations on demodulat ion and paramodulation,  and we will consider 

here only some the most straightforward ones. Demodulation is the rewriting of  terms. 

Equality clauses represent candidates for promotion to the status of  rewrite rules. Our 

particular system [2] makes all equali ty clauses demodulators,  using a weighting scheme 

to decide whether the demodulator  should be used as a left-to-right rewrite rule, a right- 

to-left rewrite rule, or a ' lexically dependent '  rewrite rule. Lexically dependent 

demodulators are described in detail in Chapter 8 of  [6]. Demodulation is defined as 

follows: Given a clause C containing a term t, and a unit equali ty clause of  the form a =/3, 

where t is an instance of  a (t  = ao), replace C by C' ,  obtained from C by replacing all 

occurrences of  t by t '  where t ' =  13a. For example,  given P(f(a, a)) and demodulator  

f (x ,  x) = g(x), the demodulat ion process causes us to add P(g(a)) and delete e( f (a ,  a)). 
Paramdoulation is a more general mechanism. Given a clause C containing a term t and a 

clause D containing an equality literal a =/3, where t unifies with a with substitution a, 
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we derive clause C',  which is Co with t replaced by/3o (and other literals from Do added). 

For example, 

D: sum(0,  x) = x 
C: sum (y ,  minus (y))  = 0 

C': minus(0)  = 0 

a = sum(0,  x);/3 = x 

t = sum (y ,  minus (y))  

o: (y ~ 0, x ~ minus (0)) 

Paramodulation is different from demodulation in that the unification goes both ways, 

the equality literal need not be in a unit clause, and both parents are ordinarily kept. 

This paper contains six problems that we have used as benchmarks during the 

development of  our theorem-proving systems. We have arranged the problems into an 

order that reflects their relative difficulty. They are as follows: 

Problem 1 : In a group, if x 2 = e for all x in the group, then the group is Abelian (for all 

x and y,  xy = yx).  

Problem 2: In a group, (x- l )  -1 = x for all x in the group. 

Problem 3: In a ring, i fx  2 = x for al lx in the ring, then xy = y x  for al lx ,y  in the ring. 

Problem 4: In a group, i fx  a = e for allx in the group, then the commutator h(h(x, y), y)  = 
e for all x and y. The commulator h(x, y)  is defined as xyx- ly  -1. 

Problem 5: 

Problem 6: 

In a ternary Boolean algebra with the third axiom removed, it is true that 

f (x ,  g(x), y)  = y for all x and y.  

In a ring, if x a = x for all x in the ring, then xy = yx  for all x and y in the 

ring. 

The first problem is a classic in the theorem proving literature. It is normally used as an 

initial test to verify that an equality reasoning component is functioning properly. 

The second problem is also quite simple, and should be easily solved by any system 

that includes substitution and simplification capabilities. 

The third problem introduces the axioms for a ring. It is of  moderate difficulty. 

The fourth problem, also a classic, is substantially more difficult than the first two 

problems. It was included in one of  the papers that introduced paramodulation [3]. 
The fifth problem involves thernary Boolean algebras, a rather obscure area in 

mathematics. Our system attained a proof of  this problem by using 'noncomplexifying 

paramodulation'. In this restriction of  paramodulation, variables that occur both in the 
into term and outside the into term can be instantiated only to other variables or to 

constants (variables in the from term can be arbitrarily instantiated). We have found 
noncomplexifying paramodulation useful in other proofs, as well; however, no compre- 

hensive study has been made of  its general utility. 
The sixth problem is truly difficult for existing systems. Two researchers have 

reported on approaches that resulted in proofs [5, 4]. 
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Problem 1 

Problem 1 : In a group, if x 2 = e for all x in the group, then the group is Abelian (for all 

x and y,  x y  = y x )  

Axioms for a group: 

1 f ( e ,  x )  = x 

2 f ( x , e )  = x 

3 f ( g ( x ) , x )  = e 

4 f ( x , g ( x ) )  = e 

5 f ( f ( x , y ) , z )  = f ( x , f ( y , z ) )  

6 x = x  

7 f ( x ,  x)  = e 

8 - ( f ( a ,  b)  = f ( b ,  a))  

Proof: 

9 f ( x , f ( y , f ( x , y ) ) )  = e 

10 x = f ( y , f ( y , x ) )  

11 f ( x , f ( y , x ) )  = y 

12 f ( x , y )  = f ( y , x )  

13 null 

Details o f  Proof: 

9 f ( x , f ( y , f ( x , y ) ) )  = e 

e is a left identi ty 

e is a right identi ty 

there exists a left inverse 

there exists a right inverse 

associativity 

reflexivity of  equality 

x * x = e (special hypothesis) 

denial of  the theorem 

7 5 5 5 5  

7 5 1  

9 1 0 2  

1110  

128  

The clause was deduced by performing the following operations: 

Paramodulate into clause 7 using clause 5 

into.term: f ( x , x )  f rom-term: f ( x , f ( y ,  z)) 

result: f ( f ( f ( y ,  z ) , y ) ,  z) = e 
Demodulate into the result using clause 5 

into-term: f ( f ( y , z ) , y )  f rom-term: f ( f ( x , y ) ,  z) 

result: f ( f ( y , f ( z , y ) ) ,  z) = e 
Demodulate into the result using clause 5 

into-term: f ( f ( y , f ( z , y ) ) ,  z) from-term: f ( f ( x , y ) ,  z) 

result: f ( y , f ( f ( z , y ) ,  z)) = e 
Demodulate into the result using clause 5 

into-term: f ( f ( z , y ) , z )  from-term: f ( f ( x , y ) , z )  

10 x = f ( y , f ( y , x ) )  

The clause was deduced by performing the following operations: 

Paramodulate from clause 7 into clause 5 

from-term: f ( x ,  x)  into-term: f ( x , y )  in f ( f ( x , y ) ,  z) 

result: f ( e ,  z) = f ( x , f ( x ,  z)) 
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Demodulate into the result using clause 1 

into-term: f(e, z) from-term: f(e, x) 

11 f ( x , f ( y , x ) )  = y 

The clause was deduced by performing the following operations: 

Paramodulate from clause 9 into clause 10 

from-term: f ( x , f ( y , f ( x , y ) ) )  into-term: f ( y ,  x) 
result: f ( y , f ( x , y ) )  = f(x ,  e) 

Demodulate into the result using clause 2 

into-term: f(x,  e) from-term: f (x,  e) 

12 f ( x , y )  = f ( y , x )  

The clause was deduced by performing the following operations: 

Paramodulate from clause 11 into clause 10 

from-term: f ( x , f ( y ,  x)) into-term: f ( y ,  x) 

Prob l em 2 

Problem 2: 

Axioms for a group: 

1 f ( e ,  x )  = x 

2 f (x , e )  = x  

3 f ( g ( x ) , x ) =  e 
4 f (x ,g(x))  = e 

5 f ( f ( x , y ) , z )  = f ( x , f ( y , z ) )  

6 x = x  

7 --(g(g(a)) = a) 

Proof: 
8 
9 

In a g r o u p ,  ( x - l )  -1 = X for all x in the group. 

e is a left identity 

e is a right identity 

there exists a left inverse 
there exists a right inverse 

associativity 

reflexivity of equality 

denial of the theorem 

9 g(g(x)) = x 

z = f (x , f (g (x ) ,  z)) 5 4 1 
g(g(x)) = x 8 4 2 

10 null 9 7 

Details of  Proof: 
8 z = f ( x , f (g (x ) , z ) )  

The clause was deduced by performing the following operations: 

Paramodulate into clause 5 using clause 4 

into-term: f ( x , y )  from-term: f (x ,g(x))  
result: f(e, z) = f ( x , f (g (x ) ,  z)) 

Demodulate into the result using clause 1 

into-term: f(e, z) from-term: f(e, x) 
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The clause was deduced by performing the following operations: 

Paramdoulate from clause 4 into clause 8 

from-term: f (x ,  g(x)) into-term: f (g (x ) ,  z) 
result: g(g(x) )  = f (x ,  e) 

Demodulate into the result using clause 2 

into-term: f ( x ,  e) from-term: f ( x ,  e) 
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Problem 3 

Problem 3: In a ring, if x 2 = x for all x in the ring, then xy  = y x  for all x, y in the ring. 

Axioms for a ring: 

1 

2 

3 
4 

5 

6 

7 

8 

9 
10 

11 

12 

Proof: 

13 

14 

15 
16 

17 

18 

19 

2O 
21 

22 

23 
24 

25 

26 

j(O, x)  = x 

j(x, o) = x 

j ( g ( x ) , x )  = 0 
j ( x ,g (x ) )  = 0 

j ( j (x , ) ' ) ,  z) = j ( x , j ( y ,  z)) 

X = X  

j ( x , y )  = j ( y , x )  

f ( f ( x , y ) ,  z) = f ( x , f ( y ,  z)) 

f ( x , j ( y ,  z)) = j ( f ( x , y ) , f ( x ,  z)) 
f ( / ( y ,  z), x) = j ( f ( y ,  x ) , f ( z ,  x)) 

f ( x , x )  = x 
- ( f (a ,  b) = f (b ,  a)) 

f (x ,  j ( x ,  y ) )  = j(x, f (x ,  y)) 
f (x ,  j ( x ,  x) )  = j(x, x) 
j ( x , y )  = j ( f ( x , j ( x , j ( x , y ) ) , f ( y , j ( x , y ) ) )  
/ ( x , x )  = / ( / ( x , x ) , / ( x , x ) )  
j ( j ( x ,  x), y )  = j ( j ( x ,  x), j ( j ( x ,  x), y) )  
o = j (x ,  x)  

/ ( x , j ( y ,  z)) = j ( y , j ( x ,  z)) 

j ( x , y )  = j ( x , j ( y , j ( f ( x , y ) , f ( y , x ) ) ) )  
y = j ( g ( x ) , j ( x , y ) )  
j ( x , j ( f ( y , x ) , f ( x , y ) ) )  = x 
j ( f ( x , y ) , f ( y , x ) )  = 0 
x = / ( y , j ( y , x ) )  

f (x ,  y) = f ( y ,  x) 
null 

0 is a left identity for sum 
0 is a right identity for sum 

there exists a left inverse for sum 

there exists a right inverse for sum 

associativity of  addition 

reflexivity of  equality 

commutativity of  addition 

associativity of  multiplication 

distributivity axioms 

x * x = x (special hypothesis) 

denial of  the theorem 

1 1 9  

11 13 

11 10 
14 15 14 

16 5 

1 7 4 4 2  

7 5 5  

15 9 11 9 11 7 5 19 

3 5 1  

21 20 21 

21 22 3 

5 1 8 1  
24 23 2 

25 12 
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Details of Proof: 

13 f(x,j(x,y)) = j(x,f(x,y)) 

The clause was deduced by performing the following operations: 

Paramodulate into clause 9 using clause 11 

into-term: f(x, y) from-term: f(x, x) 

14 f(x,j(x,x)) = j(x,x) 

The clause was deduced by performing the following operations: 
Paramdoulate into clause 13 using clause 11 

into-term: f(x,y)  from-term: f(x,x)  

15 /(x,y) = j( f (x , j (x ,y)) , f (y , j (x ,y)))  

The clause was deduced by performing the following operations: 
Paramodulate into clause 10 using clause 11 

into-term: f ( j ( y ,  z), x) from-term: f(x, x) 

16 j(x,x) = j(/(x,x),j(x,x)) 

The clause was deduced by performing the following operations: 
Paramodulate into clause t5 using clause 14 

into-term: f(x,j(x,y)) from-term: f(x,j(x,x)) 
result: j(x, x) -- j(j(x, x), f(x, j(x, x))) 

Demodulate into the result using clause 14 

into-term: f(x,j(x, x)) from-term: f(x,j(x, x)) 

17 j(j(x, x), y) = j(j(x, x), j(j(x, x), y)) 

The clause was deduced by performing the following operations: 

Paramodulate into clause 5 using clause 16 

into-term: j(x,y) from-term: j(j(x,x), j(x,x)) 

18 o = y (x , x )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 17 using clause 4 

into-term: j(j(x, x), y) from-term: j(x, g(x)) 
result: 0 -- j(j(x, x), j(j(x, x), g(j(x, x)))) 

Demodulate into the result using clause 4 
into-term: j(j(x, x) ,g( j (x ,  x))) from-term: j(x,g(x)) 
result: 0 -- j(j(x, x), O) 

Demodulate into the result using clause 2 
into-term: j(/(x,x), 0) from-term: j(x, O) 

19 j(x, j(y,  z)) = j(y,j(x,z))  

The clause was deduced by performing the following operations: 
Paramodulate into clause 5 using clause 7 
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into-term: j( j(x,y) ,z)  from-term: j(x,y) 
result: j ( j (y ,  x), z) = j(x, j(y,  z)) 

Demodulate into the result using clause 5 

into-term: j ( j ( y , x ) ,  z) from-term: j( j(x,y),z)  

20 j(x,y) = j (x , j (y , j ( f (x ,y) , f (y ,x)) ) )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 15 using clause 9 

into-term: f(x, j(x,y))  from-term: f (x , j (y ,  z)) 
result: j(x, y) = j(j(f(x, x), f(x, y)), f (y , j(x,  y))) 

Demodulate into the result using clause 11 
into-term: f(x, x) from-term: f(x, x) 
result: j(x, y) = j(j(x, f(x, y)), f (y ,  j(x, y))) 

Demodulate into the result using clause 9 

into-term: f (y , j (x ,y))  f rom- te rm: f (x , j (y ,z ) )  

result: j(x,y) = j ( j (x , f (x ,y)) , j ( f (y ,  x) , f(y,y)))  
Demodulate into the result using clause 11 

into-term: f (y ,  y) from.term: f(x, x) 
result: j(x, y) = j(j(x, f(x, y)), j ( f (y ,  x), y)) 

Demodulate into the result using clause 7 
nto-term: j ( f ( y , x ) , y )  from-term: j(x,y) 

result: j(x, y) = j(j(x, f(x, y)), j(y, f (y ,  x))) 
Demodulate into the result using clause 5 

Into-term: j ( j (x , f (x ,y)) , j (y , f (y ,x)) )  from-term: j(j(x,y),z)  
result: j(x,y) = j(x, j(f(x, y), j(y, f (y ,  x)))) 

Demodulate into the result using clause 19 

into-term: j ( f (x ,y ) , j (y , f (y ,x ) ) )  from-term: j(x. j(y,  z)) 

21 x = j (g(y) , j (y ,x))  

The clause was deduced by performing the following operations: 
Paramodulate into clause 5 using clause 3 

into-term: j(x, y) from-term: j(g(x), x) 
result: j(0, z) = j(g(x), j(x, z)) 

Demodulate into the result using clause 1 

into-term: j(O,z) from-term: j(O,x) 

22 j (x , j ( f (y ,x) , f (x ,y)))  = x 

The clause was deduced by performing the following operations: 
Paramodulate into clause 21 using clause 20 

into-term: j (y ,x)  from-term: j (x , j (y , j ( f (x ,y) , f (y ,x)) ) )  
result: j (y, j( f(x,  y), f (y ,  x))) = j(g(x), j(x, y)) 

Demodulate into the result using clause 21 
into-term: j(g(x), j(x,y)) from-term: j(g(y), j(y, x)) 

215 
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23 / ( f ( x , y ) ,  f ( y ,  x)) = o 

The clause was deduced by performing the following operations: 

Paramodulate into clause 21 using clause 22 

into-term:/(y, x) from-term: ](x, ] ( f ( y ,  x), f (x ,  y))) 
r e su l t : / ( f (y ,  x) , f (x ,  y)) = ](g(x), x) 

Demodulate into the result using clause 3 

into-term: ](g(x), x) from-term:/(g(x),  x) 

24 x = ] ( y , ] ( y , x ) )  

The clause was deduced by performing the following operations: 

Paramodulate into clause 5 using clause 18 

into-term: ](x, y)  from-term: ](x, x) 
result: ](0, 2) = ](x,j(x, z)) 

Demodulate into the result using clause 1 

into-term: ](0, z) from-term: ](0, x) 

25 f ( x , y )  = f ( y , x )  

The clause was deduced by performing the following operations: 

Paramodulate into clause 24 using clause 23 

in to - t e rm: ] (y ,x )  from-term: ] ( f ( x , y ) , f ( y , x ) )  
result: f ( y ,  x) = j ( f ( x ,  y),  O) 

Demodulate into the result using clause 2 

into-term: ] ( f (x ,y ) ,  O) from-term: ](x, O) 

Problem 4 

Problem 4: In a group, if x a = e for all x in the group, then the commutator h(h(x, y), y)  = 
e for all x and y .  The commutator h(x, y ) i s  defined as xyx- ly  -1. 

Axioms for a group: 

1 f ( e ,  x )  = x 

2 f ( x , e ) = x  

3 f ( g ( x ) , x )  = e 
4 f (x ,g (x ) )  = e 

5 f ( f ( x , y ) , z )  = f ( x , f ( y , z ) )  

6 x = x 

7 h (x , y )  = f ( x , f ( y , f ( g ( x ) , g ( y ) ) ) )  

8 f ( x , f ( x , x ) )  = e 
9 - - (h(h(a,b) ,b)  = e) 

Proof: 
10 g(e) = e 3 2 

e is a left identity 

e is a right identity 

there exists a left inverse 

there exists a right inverse 

associativity 

reflexivity of  equality 

definition o f  commutator 

x * x * x = e (special hypothesis) 
denial of the theorem 
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1 1  - -  (f(a, f(b,  f(g(a),  f (g(b) ,  f(b,  f (g ( f (a ,  f(b,  f(g(a),  g(b))))) ,  g(b)))))))  = e 

9 7 7 5 5 5  

12 x = f ( y , f ( g ( y ) , x ) )  5 4 1  
13 x = f ( g ( y ) , f ( y , x ) )  5 3 1 
14 e = f ( x , f ( y , g ( f ( x , y ) ) ) )  5 4 
15 -- (f(a, f(b,  f(g(a), f (g ( f (a ,  f(b,  f(g(a), g(b))))) ,  g(b)))))  = e) 

13 11 

16 g(g(x)) = x 12 4 2 

17 f (g(x) ,g(x))  = x 12 8 2 

18 f ( x , x )  = g(x) 17 16 16 

19 f ( x , f ( y , f ( x , y ) ) )  = g( f (x ,y ) )  18 5 

20 f (g (x ) , y )  = f ( x , f ( x , y ) )  18 5 

21 f ( x , f ( g ( y ) ,  x)) = f ( y , g ( f ( g ( y ) ,  x))) 
19 12 

22 f ( x , f ( y ,  x)) = f ( g ( y ) , g ( f ( y ,  x))) 
19 13 

23 f (x ,  f (g (y ) ,  f (x ,  z))) = f ( y ,  f ( g ( f ( g ( y ) ,  x)), z)) 
2 1 5 5 5  

24 f ( x , f ( y ,  f (x ,  z))) = f ( g ( y ) , f ( g ( f ( y ,  x)), z)) 
2 2 5 5 5  

25 -- (f(a, f (g(b),  f(g(a),  f (g(b),  f(a, f (b,  f(g(a),  b))))))) = e) 

24 15 5 5 18 16 5 5 20 

f ( x , g ( f ( y , x ) ) )  = g(y)  14 22 10 2 14 2 

g( f (x ,y ) )  = f (g(y ) ,g (x ) )  26 13 

26 

27 

28 

29 

f (x ,  f ( y ,  f (x ,  y))) = f (g (y ) ,  g(x)) 
f ( x , f ( g ( y ) ,  f (x ,  z))) = f ( y ,  f (g(x) ,  

27 

27 19 

f(y, z))) 
23 16 5 

30 - - ( e  = e) 29 25 20 28 16 16 12 8 

31 null 30 6 

Details o f  Proof: 
10 g(e) = e 

The clause was deduced by performing the following operations: 

Paramodulate into clause 3 using clause 2 

into-term: f (g(x) ,  x) from-term: f(x ,  e) 

11 -- (f(a, f(b,  f(g(a),  f (g(b) ,  f(b,  f (g( f (a ,  f (b,  f(g(a),  g(b))))) ,  g(b)))))))  = e) 

The clause was deduced by performing the following operations: 

Paramodutate into clause 9 from clause 7 

f rom-term:  h(x,y)  into-term: h(a, b) 
result: - -  (h ( f (a ,  f (b,  f(g(a),  g(b)))), b) = e) 

Demodulate into the result using clause 7 

into-term: h( f (a , f (b ,  f(g(a),g(b)))), b) from-term: h(x, y) 
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result: --  (f(f(a, f(b, f(g(a), g(b)))), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  
g(b)))) = e) 

Demodulate into the result using clause 5 

into-term: f(f(a, f(b, f(g(a), g(b)))), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  
g(b)))) 

from-term: f ( f (x ,  f (y ,  z))) 
result: --  (f(a, f( f(b,  f(g(a), g(b))), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  

g(b))))) = e) 
Demodulate into the result using clause 5 

into-term: f( f(b,  f(g(a), g(b))), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  g(b)))) 
from-term: f ( f ( x , f ( y ,  z))) 
result: --  (f(a, f(b, f(f(g(a), g(b)), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  

g(b)))))) = e) 

Demodulate into the result using clause 5 

into-term: f(f(g(a), g(b)), f(b, f(g(f(a, f(b, f(g(a), g (b))))), g(b)))) 
from-term: f ( f(x,  f (y ,  z))) 

12 x = f (y , f (g (y ) ,x ) )  

The clause was deduced by performing the following operations: 

Paramodulate into clause 5 from clause 4 

into-term: f(x, y) from-term: f(x,g(x)) 
result: f(e, z) = f(x,f(g(x),  z)) 

Demodulate into the result using clause 1 

into-term: f(e, z) from-term: f(e, x) 

13 x = f (g (y ) , f (y ,x ) )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 5 from clause 3 

into-term: f(x ,y)  from-term: f(g(x), x) 
result: f(e, z) = f(g(x), f(x,  z)) 

Demodulate into the result using clause 1 

into-term: f(e, z) from-term: f(e, x) 

14 e = f (x , f (y ,g( f (x ,y)) ) )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 5 from clause 4 

into-term: f ( f (x ,y ) , z )  from-term: f(x,g(x)) 
result: e = f (x , f (y ,  g(f(x,y)))) 

15 -- (f(a, f(b,  f(g(a),  f (g ( f (a ,  f(b,  f(g(a),  g(b) ) ) ) ) ,  g ( b ) ) ) ) )  = e)  

The clause was deduced by performing the following operations: 
Paramodulate from clause 13 into clause 11 

from-term: f (g (y ) , f (y ,  x)) 
into-term: f(g(b), f(b, f(g(f(a, f(b, f(g(a), g(b))))),  g(b)))) 
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16 g(g(x)) = X 

The clause was deduced by performing the followin operations: 
Paramodulate into clause 12 from clause 4 

into-term: f (g(y ) ,x )  from-term: f(x,g(x)) 
result: g(g(x)) = f(x, e) 

Demodulate into the result using clause 2 

into-term: f(x, e) from-term: f(x, e) 

17 f(g(x),g(x)) = x 

The clause was deduced by performing the following operations: 
Paramodulate into clause 12 from clause 8 

/nto-term: f (g(y) ,  x) from-term: f (x , f (x ,  x)) 
result: f (g(y) ,g(y))  = f ( y ,  e) 

Demodulate into the result using clause 2 
into-term: f (  y , e) from-term: f(x, e) 

18 f (x ,x)  = g(x) 

The clause was deduced by performing the following operations: 
Paramodulate into clause 17 from clause 16 

into-term: g(x) from-term: g(g(x)) 
result: f (y ,g(g(y)) )  = g(y) 

Demodulate into the result using clause 16 
/nto-term: g(g(y)) from-term: g(g(x)) 

19 f ( x , f ( y , f ( x , y ) ) )  = g(f(x,y))  

The clause was deduced by performing the following operations: 
Paramodulate into clause 18 from clause 5 

into-term: f(x, x) from-term: f ( f (x ,y ) ,  z) 

20 f (g(x) ,y)  = f (x , f (x ,y) )  

The clause was deduced by performing the following operations: 

Paramodulate from clause 18 into clause 5 
from-term: f (x ,x)  into-term: f (x ,y)  

21 f (x , f (g(y) ,  x)) = f ( y ,g ( f (g (y ) ,  x))) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 19 into clause 12 

from-term: f ( x , f ( y , f ( x , y ) ) )  into-term: f (g(y) ,x )  

22 f ( x , f ( y , x ) )  = f (g (y ) ,g ( f (y ,x ) ) )  

The clause was deduced by performing the following operations: 

Paramodulate from clause 19 into clause 13 
f rom- t e rm: f (x , f (y , f (x ,y ) ) )  into-term: f ( y , x )  
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23 f (x , f (g(y) , f (x ,  z))) = f ( y , f (g ( f (g (y ) ,  x)), z)) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 21 into clause 5 

from-term: f (y ,g( f (g(y) ,x ) ) )  into-term: f (x ,y)  
result: f ( f (x , f (g(y) ,  x)), z) = f ( y , f (g ( f (g (y ) ,  x)), z)) 

Demodulate into the result using clause 5 

into-term: f ( f (x , f (g(y) ,  x)), z) from-term: f ( f (x ,y) ,  z) 
result: f ( x , f ( f (g (y ) ,  x), z)) = f ( y , f (g ( f (g (y ) ,  x)), z)) 

Demodulate into the result using clause 5 

into-term: f ( f (g(y) ,  x), z) from.term: f ( f (x ,y) ,  z) 

24 f ( x , f ( y , f ( x ,  z))) = f (g (y ) , f (g ( f ( y ,  x)), z)) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 22 into clause 5 

from-term: f (g(y) ,g( f (y ,x ) ) )  into-term:f(x,y)  

result: f ( f (x ,  f (y ,  x)), z) = f(g(y),  f (g ( f ( y ,  x)), z)) 
Demodulate into the result using clause 5 

into-term: f ( f ( x , f ( y ,  x)), z) from-term: f ( f (x ,y) ,  z) 
result: f ( x , f ( f ( y ,  x), z)) = f(g(y) ,  f (g ( f ( y ,  x)), z)) 

Demodulate into the result using clause 5 

into-term: f ( f ( y ,  x), z) from-term: f ( f (x ,y) ,  z) 

25 - (f(a,f(g(b),f(g(a),f(g(b),f(a,f(b,f(g(a),  b))))))) = e) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 24 into clause 15 

from-term: f (  g(y), f (  g( f (y ,  x)), z)) 
into-term: f(g(a), f(g(f(a, f(b, f(g(a), g(b))))), g(b))) 
result: -- (f(a, f(b, f( f(b,  f(g(a), g(b))), f(a, f( f(b,  f(g(a), g(b))), 

g(b)))))) = e) 
Demodulate into the result using clause 5 

into-term: f( f(b,  f(g(a), g(b))), g(b)) from-term: f ( f (x ,y) ,  z) 

result: -- (f(a, f(  b, f (  f(  b , f (  g(a), g(b))), f(a, f (  b , f (  f(  g(a), g(b)), 
g(b))))))) = e) 

Demodulate into the result using clause 5 
into-term: f(f(g(a), g(b)), g(b)) from-term: f ( f (x ,  y), z) 
result: -- (f(a, f(b, f( f(b,  f(g(a), g(b))), f(a, f(b, f(g(a), f(g(b), 

g(b) ) ) ) ) ) ) )  = e) 
Demodulate into the result using clause 18 

into-term: f(g(b),g(b)) from-term: f(x, x) 
result: -- (f(a, f(b, f( f(b,  f (g  (a), g (b))), f(a, f(b, f(g(a), 

g(g(b)))))))) = e) 
Demodulate into the result using clause 16 

into-term: g(g(b)) from-term: g(g(x)) 
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result: --  (f(a, f(b, f(f(b, f(g(a), g(b))), f(a, f(b, f(g(a), b)))))) = e) 
Demodulate into the result using clause 5 

into-term: f(f(b, f(g(a), g(b))), f(a, f(b, f(g(a), b)))) 
from-term: f(f(x,y),  z) 
result: - (f(a, f(b, f(b, f(f(g(a), g(b)), f(a,f(b, f(g(a), b))))))) = e) 

Demodulate into the result using clause 5 

into-term: f(f(g(a), g(b)), f(a, f(b,f(g(a), b)))) 

from-term: f(  f(x, y ), z) 
result: -- (f(a, f(b, f(b, f(g(a), f(g(b), f(a, f(b, f(g(a), b)))))))) = e) 

Demodulate into the result using clause 20 

into-term: f(b, f(b, jr(g(a), f(g(b), f(a, f(b, f(g(a), b))))))) 

from-term: f(x, f(x, y)) 

26 f(x,g(f(y,x))) = g(y) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 14 into clause 22 

from-term: f(x, f (y ,  g(f(x, y)))) into-term: f ( y ,  x) 

result: f ( f (y ,  g(f(x, y))), f(x, f (y ,  g(f(x, y))))) = f(g(x), g(e)) 
Demodulate into the result using clause 10 

from-term: g(e) into-term: g(e) 
result: f ( f (y ,  g(f(x, y))), f(x, f (y ,  g(f(x, y))))) = f(g(x), e) 

Demodulate into the result using clause 2 

from-term: f(x, e) into-term: f(g(x), e) 
result: f ( f (y ,  g(f(x, y))), f(x, f (y ,  g(f(x, y))))) = g(x) 

Demodulate into the result using clause 14 

from-term: f(x, f (y ,  g(f(x, y)))) 

into-term: f (x , f (y ,  g(f(x, y)))) 
result: f ( f(y,g(f(x,y))) ,  e) = g(x) 

Demodulate into the result using clause 2 

from-term:f (x, e) into-term: f( f(y,g(f(x,y))) ,  e) 

27 g(f(x,y)) = f(g(y),g(x)) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 26 into clause 13 

from-term: f(x,g(f(y,x)))  into-term: f (y ,x)  

28 f (x , f (y , f (x ,y)))  = f(g(y),g(x)) 

The clause was deduced by performing the following operations: 
Paramodulate from clause 27 into clause 19 

from-term: g(f(x,y)) into-term: g(f(x,y)) 

29 f(x, f(g(y), f(x,z)))  = f(y , f (g(x) , f (y ,z)))  

The clause was deduced by performing the following operations: 
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Paramodulate from clause 27 into clause 23 

from-term: g(f(x,y))  into-term: g( f (g(y) ,x))  
result: f (x , f (g(y) , f (x ,  z))) = f (y , f ( f (g(x) ,g(g(y)) ) ,  z)) 

Demodulate into the result using clause 16 

from-term: g(g(x)) into-term: g(g(y)) 
result: f (x , f (g(y) , f (x ,  z))) = f (y , f ( f (g (x ) , y ) ,  z)) 

Demodulate into the result using clause 5 

into-term: f ( f (g(x) ,y) ,  z) from-term: f ( f (x ,y ) ,  z) 

30 -- (e = e) 

The clause was deduced by performing the following operations: 

Paramodulate from clause 29 into clause 25 

from-term: f(x, f (g(y) ,  f(x, z))) 
into-term: f(g(b), f(g(a), f(g(b), f(a, f(b, f(g(a), b)))))) 

result: -- (f(a, f(a, f(g(g(b)), f(a, f(a, f(b, f(g(a), b))))))) = e) 
Demodulate into the result using clause 20 

from-term: f (x , f (x ,y )  into-term: f(a,f(a,f(b,f(g(a), b)))) 

result: -- (f(a, f(a, f(g(g(b)), f(g(a), f(b, f(g(a), b)))))) = e) 
Demodulate into the result using clause 28 

from-term: f(x, f (y ,  f(x, y))) into-term: f(g(a), f(b, f(g(a), b))) 
result: -- (f(a, f(a, f(g(g(b)), f(g(b), g(g(a)))))) = e) 

Demodulate into the result using clause 16 

f rom- te rm:g(g(x) )  into.term: g(g(a)) 
result: -- (f(a, f(a, f(g(g(b)), f(g(b), a)))) = e) 

Demodulate into the result using clause 16 

from-term: g(g(x)) into-term: g(g(b)) 
result: -- (f(a,f(a,f(b,f(g(b),  a)))) = e) 

Demodulate into the result using clause 12 

from-term: f ( y , f (g (y ) , x ) )  into-term: f(b,f(g(b),a)) 
result: -- (f(a,f(a, a)) = e) 

Demodulate into the result using clause 8 

from-term: f(x, f(x, x)) into-term: f(a, f(a, a)) 

P r o b l e m  5 

Problem 5: In a ternary Boolean algebra with the third axiom removed, it is true that 

f (x,g(x),y)  =y for aUx andy .  

Ternary Boolean algebras were defined in by A. A. Grau in 1947 (see 'Ternary Boolean 
algebra', Bull. Amer. Math. Soc. 53, (6) June 1947, pp. 567-572).  Later Chinthayamma 
published work on independent axioms for ternary Boolean algebras (see 'Sets of inde- 

pendent axioms for a ternary Boolean algebra', Not. Amer. Math. Soc. 16, (4) June 1969, 

p. 654). 
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The function f c a n  be thought of as a 3-place produce, and the function g may be thought 

of as inverse. 

Axioms 

1 

for a ternary Boolean algebra: 

f ( f ( v ,  w, x), y,  f(v,  w, z)) = f(v, w, f (x ,  y, z)) 
ax. 1 of a ternary Boolean algebra 

2 f ( y , x , x )  = x 

3 f ( x , y , g ( y ) )  = x 

4 f ( x , x , y )  = x 

5 f ( g ( y ) , y , x )  = x 

6 x = x 

Now 

7 f ( x , y , x ) = x  

The denial of the theorem is as follows: 

8 - - ( f (a ,g (a) ,b )  = b) 

Proof: 
9 
10 
11 
12 

13 

14 

15 

ax. 2 of a ternary Boolean algebra 

ax. 3 of a ternary Boolean algebra 

ax. 4 of a ternary Boolean algebra 

ax. 5 of a ternary Boolean algebra 

reflexivity of equality 

remove axiom 3 and add the following lemma: 

lemma provable from 1, 2, 5, and 6 

denial of the theorem 

f ( f ( v ,  w, x), x, v) = f(v, w, x) 
f i r ( y ,  wl ,  z ) ,y ,  z) = f ( y ,  wl ,  z) 
f ( f (V,  w , g ( y ) ) , y ,  V) = V 

f (x ,  y,  f(v,  x, y)) = f(v, x,y) 
f ( f ( v ,  w , x ) , x , f ( v l ,  v, w)) -- f(v,  w,x )  

f ( y , g ( y ) , z )  = z 
null 

Details o f  Proof: 

9 f ( f ( v , w , x ) , x , v )  = f ( v , w , x )  

The clause was deduced by performing the following operations: 

Paramodulate into clause 1 using clause 7 

into-term: f(v,  w, z) from-term: f ( x , y ,  x) 
result: f ( f (v ,  w, x), y ,  v)) = f(v, w, f (x ,  y,  v)) 

Paramodulate into the result using clause 4 

into-term: f ( x , y ,  v) from-term: f ( x , x , y )  

10 f ( f ( y , w l , z ) , y , z )  = f ( y ,  w l , z )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 1 using clause 9 

into-term: f(v,  w, x) from-term: f ( f ( v ,  w, x), x, v) 
result: f ( f ( v l ,  w l , x l ) , y , f ( f ( v l ,  w l ,  x l ) , x l ,  z)) = 

f ( f ( v l ,  wl,  x 1), x 1, f ( v l ,  y ,  z)) 
Paramodulate into the result using clause 2 

into-term: f ( f ( v l ,  wl,  x l ) ,  x l ,  z) from-term: f ( y ,  x, x) 

1 7 4  
1 9 2 4 9  

1 7 5 7  
1 2 2  

1 1 2 4  
1 1 3 2 1 0 1 1 2  

8 1 5  
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result: f ( f (v l ,  wl,  z), y, z) = f ( f (v l ,  wl,  z), z , f (vl  ,y, z)) 
Paramodulate into the result using clause 4 

into-term: f (v l , y ,  z) from-term: f(x, x ,y)  
result: f ( f ( y ,  wl, z), y, z) = f ( f ( y ,  wl, z), z ,y) 

Demodulate the result using clause 9 

into-term: f ( f ( y ,  wl, z), z ,y) from-term: f(f(v,  w, x), x, v) 

11 f ( f (v ,w,g(y) ) ,y ,v )  = v 

The clause was deduced by performing the following operations: 
Paramodulate into clause 1 using clause 7 

into-term: f(v, w, z) from-term: f(x, y, x) 
result: f( f(v,  w,x) ,y,  v) = f(v, w, f (x ,y ,  v)) 

Paramodualte into the result using clause 5 

into-term: f (x ,y ,  v) from-term: f (g (y ) , y , x )  
result: f( f(v,  w,g(y)),y,  v) = f(v, w, v) 

Paramodulate into the result using clause 7 
into-term: f(v, w, v) from-term: f (x ,y ,  x) 

12 f ( x ,y , f (v ,x ,y ) )  = f (v ,x ,y )  

The clause was deduced by performing the following operations: 
Paramodulate into clause 1 using clause 2 

into-term: f(v, w, x) from-term: f (y ,  x, x) 
result: f (x ,y , f (v ,  x, z)) = f (v , x , f ( x , y ,  z)) 

Paramodulate into the result using clause 2 

into-term: f (x ,y ,  z) from-term: f ( y , x , x )  

13 f( f(v,  w,x) ,x , f (v l ,  v, w)) = f(v, w,x) 

The clause was deduced by performing the following operations: 

Paramodulate into clause 1 using clause 12 

into-term: f(v, w, z) from-term: f(x, y, f(v, x, y)) 
result: f( f(v,  w, x),y,  f(vl ,  v, w)) = 

f(v, w , f (x , y , f ( v l ,  v, w))) 
Paramodulate into the result using clause 4 

into-term: f(x, y , f (v l ,  v, w)) from-term: f(x, x, y) 

14 f ( y ,g (y ) , z )  = z 

The clause was deduced by performing the following operations: 
Paramodulate into clause 1 using clause 13 

into-term: f(v, w, x) from-term: f( f(v,  w, x), x , f (v l ,  v, w)) 
result: f ( f (v l ,  w l, w) ,y , f (  f(vl ,  w l, w), w, z)) = 

f ( f (v l ,  wl, w), w,f(f(v2, vl, wl ),y, z)) 
Paramodulate into the result using clause 2 

into-term: f ( f (v l ,  wl, w), w, z) from-term: f (y ,  x, x) 
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result: f ( f ( v l ,  wl ,  z) ,y ,  z) = f ( f ( v l ,  wl ,  z), z , f ( f (v2 ,  vl,  wl ) ,y ,  z)) 
Paramodulate into the result using clause 10 

into-term: f ( f ( v l ,  wl ,  z ) ,y ,  z) from-term: f ( f ( y ,  wl ,  z ) ,y ,  z) 
result: f ( y ,  wl ,  z) = f ( f ( y ,  wl ,  z), z , f ( f ( v 2 , y ,  w l ) , y ,  z)) 

Paramodulate into the result using clause 11 

into-term: f ( f ( v2 , y ,  w l ) , y ,  z) from-term: f ( f (v ,  w ,g (y ) ) , y ,  v) 
result: f ( y , g ( y ) ,  z) = f ( f ( y , g ( y ) ,  z), z, z) 

Paramodulate into the result using clause 2 

into-term: f ( f ( y ,  g(y),  z). z, z) from-term: f ( y ,  x, x) 
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P r o b l e m  6 

Problem 6: 
ring. 

Axioms for a ring: 

1 / ( 0 ,  x )  = x 

2 j ( x ,  o) = x 

3 j ( g ( x ) ,  x )  = o 

4 ](x,g(x)) = 0 

5 / ( j ( x , y ) , z )  = j ( x , j ( y , z ) )  

6 x = x  

7 j ( x , y )  = ] ( y , x )  

8 f ( f ( x , y ) , z )  = f ( x , f ( y , z ) )  

9 f ( x , j ( y , z ) )  = f ( f ( x , y ) , f ( x , z ) )  
10 f ( l ( y , z ) , x )  = ] ( f ( y , x ) , f ( z , x ) )  

11 f ( x , f ( x , x ) )  = x 

12 --  ( f ( a ,  b)  = f ( b ,  a))  

In a ring, if x 3 = x for all x in the ring, then xy = yx  for all x and y in the 

0 is a left identity for sum 

0 is a right identity sum 

there exists a left inverse sum 

there exists a right inverse sum 

associativity of  addition 

reflexivity of  equality 

commutativity of  addition 

associativity of  multiplication 

distributivity axioms 

x * x * x = x (special hypothesis) 
denial of  the theorem 

The proof  of  tiffs theorem is complex enough to prohibit the type o f  presentation that we 
have used for the preceding theorems. We include a proof in the form that a human 

mathematician might write it. Since the problem is a standard one for graduate courses in 

algebra, there are commonly available proofs. However, the one that we supply seems 

somewhat unusual. It was given to us by Steve Winker. 

Proof: 

(1) Note that (x2) 2 = x 2, since x 3 = x. 
(2) First, we prove that x2y2x 2 = y2x2y2 

If we multiply out (x 2 _y2)3 ,  and simplify the result, we find that 

(x 2 _yZ)a  = x 2 _ x2y2x 2 + y2x2y2 _ y2. 
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However, since (x 2 _y2)3 = (x 2 __y2) by the hypothesis of the theorem, x2y2x  2 = y2x~y2.  

(3) Now we can show that squares commute; that is, for any x, y 

x2y 2 = y2x2" 

Start with the equation 

x~y~x2 = y2x~y~. 

If we right multiply each side with (x2y2x2y  z) and simplify the result, we derive 

x2y  2 = y2x2y2 .  

On the other hand, if we left multiply each side by ( y2x2yZx2)  and simplify we derive 

y2x2 = y2x2y2" 

By transitivity, we arrive at the desired lemma: x 2 y  2 = y2x2.  

(4) Now we can show that a square will commute with anything, that is, for any x and y, 
xy2 = y2 x : 

(xy2) a = x ( y 2 x y 2 x ) y  2 = x y 2 ( y 2 x y 2 x )  = xy2xy2x  (since squares commute) 

(y2x)a = y 2 ( x y 2 x y 2 ) x  = ( x y 2 x y 2 ) y 2 x  = x y 2 x y 2 x .  

Thus, x y  2 = (xy2) a = x y 2 x y 2 x  = (y2x)3 = y 2 x  

(5) Now we can finish the proof of the theorem: for any x and y ,  x y  = y x .  

x y  = x y x y x y  = x y x y a x y  = x y ( x y ) y 2 x y  = x y y 2 x y x y  = 

x y y y ( x y ) :  = x y y ( x y ) : y  = x y 2 ( x y ) 2 y  = x ( x y ) 2 y 2 y  = 

x x y x y y y y  = x 2 y x y  2 = y 2 y x x 2  = y x  

Summary 

In this note we have offered a set of six problems that represent a spectrum in terms of 
difficulty. The first two problems arc relatively trivial. The third and fourth are fairly 
difficult, although there are several existing theorem-proving systems capable of deriving 
proofs in fairly short time periods. We have found the fifth problem quite challenging, 

although the proof is not terribly long. The sixth problem represents the most complex 

problem in equality for which a proof has been derived by an automated system [5, 4]. 
The reader should note that the proofs given are not always exactly those generated by 

automated reasoning systems. In some cases, we have shortened proofs derived by our 
system. We include proofs only as aids for those who wish to study exactly why their 

system might be failing to reach a complete proof. 
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Response 

An abbreviated version of this discussion and example set appeared in the third issue of 
the AAR Newsletter. Dallas Lankford wrote in response to that article: 

I read with some interest the discussion of graduated problems for testing equality 
reasoning by R. Overbeek and E. Lusk in the AAR Newsletter #3. Perhaps the 
subscribers might be interested in some additional information on these problems. 

The earliest published computer proof of problem 1 that I have found is in Huet's 
'Experiments with an interactive prover for logic with equality'. Case Western Reserve 
University, Jennings Computing Center, report 1106, 1972, pp. 41-42 and pp. 62-63. The 
computer proof required five rounds of resolution and paramodulation, used some 

equations as rewrite rules, generated seventeen clauses during the proof search, and 
required about twelve seconds of CPU. Mike Ballantyne and I subsequently derived a 
complete set for this problem using completion and commutative-associative completion. 
The complete set for problem 1 is: 

1. [x 2] -+ [e l 

2. [x- l l  + [x] 
3. [x.e]-+ [x] 

where congruence classes are defined by the commutative and associative axioms. This 
and other computer experiments were presented at the 3rd CADE at MIT in August of 
1977. The most impressive solution of problem 2 is contained in one of the computer 
experiments by Knuth and Bendix [1970] where the first complete set for free groups 
was derived. Their paper is found in Computational Problems in Abstract Algebras, 
Pergamon Press, 1970, and in Vol. 2 of Automation of  Reasoning, Springer-Verlag, 1983. 
Problem 3 also has a solution by completion, apparently first observed by Hsiang in his 
July 1981 paper, 'Refutational theorem proving using term rewriting systems'. The 
complete set is 

1. [x + 0l -+ Ix] 
2. [x + x] -,  [01 
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3. [x.1] ~ [x] 

4. Ix .x]- ,  Ix] 
5. [x.(y + z)] --, [(x.y) + (x-z)] 
6. [x.O]~[O] 

7. I - x ]  -, Ix] 

where congruence classes are defined by the commutative and associative axioms for 
addition and multiplication. The first computer proof of problem 4 that I know of is 

contained in Nevins's 1974 JACM paper, required 30 minutes of CPU time, and generated 

a search space of over 400 formulas. Subsequently a completion-based theorem prover 

implemented by Ballantyne and Lankford solved problem 4 in 30 seconds, and 

terminated with a search space of 11 formulas, cf. Bledsoe's 'None-resolution theorem 

proving' in IJCAL75 and A I  Journal (1977). A variant of problem 5 is proved by Nevin's 

computer program, see his 1974 IACM paper. Concerning the difficulty of problem 6, it 

depends on how much information is given to the computer program. In Veroff's 

computer proof, much information was provided by the human in the form of consider- 

able clausal information, and so the computer proof was relatively easy. By contrast, 

little information about the problem was given to his program by Stickel, and so the 

computer proof was quite difficult. Moreover, Stickel's program found a decision 
algorithm for free (x 3 = x ) -  rings, which is a much deeper result than just showing 

(x 3 =  x ) -  rings are commutative. Because complete sets are decision algorithms, the 

computer completion proofs for problems 1, 2, and 3 also found decision algorithms for 

(x 2 = e) - groups, groups, and (x 2 = x) - rings (i.e. Boolean rings). Whether completion 

decision algorithms exist for (x 3 = e) - groups and ternary Boolean algebras (problems 4 
and 5) appears to be currently unknown. Although it is open whether complete sets 

exist for problems 4 and 5, problem 4 is known to be decidable. Groups satisfying x n -- e 

are called Burnside groups, and have word problem decision algorithms for n = 2, 3, 4, 

and 6, and for odd n ~> 665, see Adian's The Burnside Problem and Identities in Groups, 

Springer-Verlag, 1979, pp. 250. It is unknown whether tractable computer implemen- 
tations of the approach described by Adian can be developed. In my opinion, these are 
two very important open problems in applied equational logic. 


